个人信息
张琳
|
系所:计算机系 |
职称:讲师 |
职务: |
学科:计算机科学与技术 |
电话: |
电子邮箱: |
zhanglin92@xauat.edu.cn |
办公地点: |
|
研究方向: |
图像处理,机器人导航及SLAM,目标检测 |
教育背景
2017.9-2023.3,西安交通大学,机械工程专业,博士。
2014.9-2017.6,重庆大学,计算机技术专业,硕士。
2010.9-2014.6,湖南师范大学,计算机科学与技术专业,本科。
工作经历
2023.4-至今,bv伟德国际1946,信息与控制工程学院,计算机系,讲师。
主讲课程
数字图像处理,系统工作设计室,信息技术基础
项目经历
2018-2019:参与国家自然科学基金“复杂曲面高精高速非接触检测理论与精度增长技术研究”(51375377)。
2017-2018:参与汉德车桥横向科研项目,提出一种新的车桥焊缝位置检测算法。
2014-2017:参与国家科技支撑计划课题“精准肝胆外科技术体系的构建及询证评价”(2012BAI06B01)子课题“肝脏解剖结构立体定量相关技术方法研究”。
学术成果
以第一作者发表SCI论文12篇,EI论文1篇,发明专利2项。部分论文列表如下:
[1]Zhang Lin, Zhang Yingjie, Dai Bochao, Chen Bo, Li Yangfan, Welding defect detection based on local image enhancement[J]. IET image processing, 2019, 13(13): 2647-58.
[2]Lin Zhang, Yingjie Zhang, Bo Chen, Improving the extracting precision of stripe center for structured light measurement [J]. optik-International Journal of Light and Electron Optics, 2019, vol 207, 163816.
[3]Lin Zhang, Yingjie Zhang, Yangfan Li, Path Planning for Indoor Mobile Robot Based on Deep Learning [J]. optik-International Journal of Light and Electron Optics, October 2020, vol 219, 165096.
[4]Zhang Lin, Zhang Yingjie, Li Yangfan, Mobile Robot Path Planning Based on Improved Localized Particle Swarm Optimization, IEEE sensors journal, pp. 1-11, 10.1109/JSEN.2020.3039275.
[5]Zhang Lin, Zhang Yingjie, Zeng Manni, Li Yangfan, Robot navigation based on improved A* algorithm in dynamic environment, Assembly Automation, Jul 2021, vol 41, no. 4, pp. 419-430.
[6]Zhang Lin, Zhang Yingjie, Improved feature point extraction method of ORB-SLAM2 dense map, Assembly Automation, July 2022, vol. 42, no. 4, pp. 552-566.
[7]Lin Zhang, Xinyu Zhang, Ning An, Rui Gao, Yingjie Zhang, Object detection based on deep learning and B-spline level set in color images, IEEE Access, 2022, 10: 74841-74849.
[8]Zhang Lin, Zhang Yingjie, Solving the Facility Layout Problem with Genetic Algorithm[C], International conference on industrial engineering and applications (ICIEA2019), 2019, April, pp. 164-168.
[9]Zhang L, Ji L, Ma Z. Target positioning method based on B-spline level set and GC Yolo-v3[J]. Cluster Computing, 2024, 27(3): 3575-3591.
[10]Zhang L, An N, Ma Z. Research of hybrid path planning with improved A* and TEB in static and dynamic environments[J]. The Journal of Supercomputing, 2024, 80: 18008-18047.
社会兼职
无